Numerical Evidence Toward a 2-adic Equivariant "Main Conjecture"
نویسندگان
چکیده
1. The conjecture Let K be a totally real finite Galois extension of Q with Galois group G dihedral of order 8, and suppose that √ 2 is not in K. Fix a finite set S of primes of Q including 2, ∞ and all primes that ramify in K. Let C be the cyclic subgroup of G of order 4 and F the fixed field of C acting on K. Fix a 2-adic unit u ≡ 5 mod 8Z 2. Write L F (s, χ) for the 2-adic L-functions, normalized as in [W], of the 2-adic characters χ of C or, equivalently by class field theory, of the corresponding 2-adic primitive ray class characters. We always work with their S-truncated forms
منابع مشابه
Integral and p-adic Refinements of the Abelian Stark Conjecture
We give a formulation of the abelian case of Stark’s Main Conjecture in terms of determinants of projective modules and briefly show how this formulation leads naturally to its Equivariant Tamagawa Number Conjecture (ETNC) – type integral refinements. We discuss the Rubin-Stark integral refinement of an idempotent p1 iece of Stark’s Abelian Main Conjecture. In the process, we give a new formula...
متن کاملHybrid Iwasawa Algebras and the Equivariant Iwasawa Main Conjecture
Let p be an odd prime. We give an unconditional proof of the equivariant Iwasawa main conjecture for totally real fields for an infinite class of one-dimensional non-abelian p-adic Lie extensions. Crucially, this result does not depend on the vanishing of the relevant Iwasawa μ-invariant.
متن کاملEquivariant Iwasawa theory and non-abelian Starck-type conjectures
We discuss three di erent formulations of the equivariant Iwasawa main conjecture attached to an extension K/k of totally real elds with Galois group G, where k is a number eld and G is a p-adic Lie group of dimension 1 for an odd prime p. All these formulations are equivalent and hold if Iwasawa's μ-invariant vanishes. Under mild hypotheses, we use this to prove non-abelian generalizations of ...
متن کاملON THE p-ADIC STARK CONJECTURE AT s = 1 AND APPLICATIONS
Let E/F be a finite Galois extension of totally real number fields and let p be a prime. The ‘p-adic Stark conjecture at s = 1’ relates the leading terms at s = 1 of p-adic Artin L-functions to those of the complex Artin L-functions attached to E/F . We prove this conjecture unconditionally when E/Q is abelian. Moreover, we also show that for certain non-abelian extensions E/F the p-adic Stark ...
متن کاملEquivariant Weierstrass Preparation and Values of L - functions at Negative Integers
We apply an equivariant version of the p-adic Weierstrass Preparation Theorem in the context of possible non-commutative generalizations of the power series of Deligne and Ribet. We then consider CM abelian extensions of totally real fields and by combining our earlier considerations with the known validity of the Main Conjecture of Iwasawa theory we prove, modulo the conjectural vanishing of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 20 شماره
صفحات -
تاریخ انتشار 2011